CVXMOD: Convex Optimization in Python

Jacob Mattingley
joint work with Stephen Boyd
Electrical Engineering Department, Stanford University

INFORMS, 10/12/08
CVXMOD

• convex optimization modeling layer, in Python

• completely open source, object-oriented toolchain

• form problems easily using basic set of atoms and composition rules from convex analysis

• uses CVXOPT’s general nonlinear convex solver (Vandenberghe, Dahl 2005)

• generate custom C for real-time embedded convex optimization
Outline

- modeling languages and disciplined convex programming
- example: optimal execution
- real-time embedded optimization
- code generation
History

- general purpose optimization modeling systems AMPL, GAMS (1970s), many others...
- systems for SDPs/LMIs (1990s): SDPSOL (Wu, Boyd), LMILAB (Gahinet, Nemirovsky), LMITOOL (El Ghaoui)
- YALMIP (Löfberg 2000–)
- automated convexity checking (Crusius PhD thesis 2002)
- disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)
- CVX (Grant, Boyd, Ye 2005)
- CVXOPT (Dahl, Vandenberghe 2005)
- GGPLAB (Mutapcic, Koh, et al 2006)
Determining convexity—two approaches

• user creates (almost any) model; system attempts to verify convexity
 – hard problem
 – best effort
 – detect convexity with automatic differentiation and interval analysis
 Orban, Fourer 2004 (Dr. AMPL), Nenov, Fylstra, Kolev 2004

• user creates model following a restricted set of rules that ensure convexity
 – model is convex by construction
 – seems more useful to us in engineering
 – user must have some understanding and skill
 – CVX, CVXMOD
Disciplined convex programming

- convex-by-construction method
- expressions appearing in objective and constraints are formed from
 - an extensible set of atoms (functions)
 - a small set of combination rules derived from convex analysis
- rule set is intentionally small; not “as many rules as possible”
- we’ve found it surprisingly versatile
Example

\[\|Ax - b\|_2 \]

- made from variable \(x \), parameters \(A \) and \(b \), atom \(\| \cdot \|_2 \)

- expression \(Ax - b \) is affine in \(x \)

- composite expression \(\|Ax - b\|_2 \) is convex, positive, non-monotonic
 - could use it in objective, minimize(\(\|Ax - b\|_2 \))
 - could use it in constraint, \(\|Ax - b\|_2 \leq 1 \)

- represent in CVXMOD as \texttt{norm2}(A*x - b)\)
Composition rules

• can combine atoms using valid composition rules, *e.g.*:
 – a convex function of an affine function is convex
 – the negative of a convex function is concave
 – a convex, nondecreasing function of a convex function is convex
 – a concave, nondecreasing function of a concave function is concave
• for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nondecreasing in its ith arg, or
 – g_i is concave and h is nonincreasing in its ith arg
• for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nonincreasing in ith arg, or
 – g_i is concave and h is nondecreasing in ith arg
Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3×3 variable

- **convex:**
 - $\text{norm2}(A*x - y) + 0.1*\text{norm1}(x)$
 - $\text{maxeig}(2*X - 4*\text{eye}(3))$

- **concave:**
 - $\text{min}(1 + 2*u, 1 - \text{max}(2, v))$
 - $\sqrt{v} - 4.55*\text{invpos}(u - v)$
Rejected examples

u, v, x, y are scalar variables

- neither convex nor concave:
 - $\text{square}(x) - \text{square}(y)$
 - $\text{norm}(A \cdot x - y) - 0.1 \cdot \text{norm}(x, 1)$

- rejected due to limited DCP ruleset:
 - $\sqrt{\text{sum}(\text{square}(x))}$ (is convex; could use $\text{norm}(x)$)
 - $\text{norm}(x) - 0.1 \cdot \text{norm}(x)$ (is convex; could use $0.9 \cdot \text{norm}(x)$)
Problem transformation

- DCP makes automatic transformation to convex standard form easy
- based on epigraphical transformations
Transformation example

variables x, y; parameters A, b

$$\|Ax - b\|_\infty \leq 3 \log(y)$$
Transformation example

variables x, y; parameters A, b

$$\|Ax - b\|_\infty \leq 3 \log(y)$$

• introduce variable t_1, to get

$$t_1 = Ax - b$$

$$\|t_1\|_\infty \leq 3 \log(y)$$
Transformation example

variables \(x, y \); parameters \(A, b \)

\[\| Ax - b \|_\infty \leq 3 \log(y) \]

- introduce \(t_2 \), to get

\[t_1 = Ax - b \]
\[t_2 \leq 3 \log(y) \]
\[-t_2 \mathbf{1} \leq t_1 \leq t_2 \mathbf{1} \]
Transformation example

variables x, y; parameters A, b

$$\|Ax - b\|_\infty \leq 3 \log(y)$$

• lastly, introduce variable t_3, to get

$$t_1 = Ax - b$$
$$t_2 \leq 3t_3$$
$$-t_2 \mathbf{1} \leq t_1 \leq t_2 \mathbf{1}$$
$$t_3 \leq \log(y)$$
Outline

- modeling languages and disciplined convex programming

- example: optimal execution

- real-time embedded optimization

- code generation
Optimal execution

• execute a sell order for S shares over T time periods

• prices modeled as random walk, plus price decrease from current and previous sales

• maximize expected revenue

• yields (convex) quadratic program

\[
\begin{align*}
\text{maximize} & \quad \tilde{p}^T s - s^T Q s \\
\text{subject to} & \quad 0 \leq s \leq S^{\text{max}} \\
& \quad 1^T s = S
\end{align*}
\]

• obvious initialization of sales: $s_i = S/T$, $i = 1, \ldots, T$
Specifying problem family in CVXMOD

optimal sell order execution

\[
\begin{align*}
s &= \text{optvar('s', } T) \\
S &= \text{param('S')} \\
p\bar &= \text{param('pbar')} \\
\text{prob} &= \text{problem}(\text{maximize}(tp(p\bar)*s - \text{quadform}(s, Q)), \nn\quad [0 <= s, s <= S_{\max}, \text{sum}(s) == S])
\end{align*}
\]

(Q, S_{\max}, T have previously defined numerical values)

- describes a problem family, parameterized by p\bar, S
- every symbol (s, p\bar, prob, ...) is a (manipulable) Python object
Solving problem instance in CVXMOD

```plaintext
pbar.value = linspace(10, 12, 20)
S.value = 100 + 1000*rand()
prob.solve()
```

- prob now contains a problem instance

- `prob.solve()`
 - transforms prob into standard form
 - calls CVXOPT’s solver
 - transforms solution back to original variables

- after solution, access `value()` of any cvxmod object
 (value(s), value(s <= Smax), quadform(s, Q), ...)

INFORMS, 10/12/08
CVXMOD performance

- set $T = 20$ time periods, get problem with 20 variables, 41 constraints
- takes 85 ms to solve (nothing special, Python language overhead)
Outline

- modeling languages and disciplined convex programming
- example: optimal execution
- real-time embedded optimization
- code generation
Solving problems—two scenarios

- human-in-loop optimization
 - single instance
 - structure recognized and exploited at solve time
 - example: IC design

- embedded optimization
 - no human involved
 - many instances, same structure (same problem family)
 - real-time deadlines
 - example: model predictive control

- not a strict distinction
Embedded optimization

• compile time almost doesn’t matter

• detect and exploit structure once, at compile time

• solve time is critical: $O(\text{ms})$ or $O(\mu\text{s})$, even $O(\text{ns})$

• relaxed accuracy requirements

• can exploit clever initializations (including warm start)

• currently done by custom code development
Outline

- modeling languages and disciplined convex programming
- example: optimal execution
- real-time embedded optimization
- code generation
Two scenarios

- **human-in-loop**

 ![Diagram](human-in-loop-diagram)

- **code generation**

 ![Diagram](code-generation-diagram)
Code generation in CVXMOD

- preliminary implementation (not yet released)
- generates C source code from CVXMOD problem family specification
- solver uses simple primal barrier method
- at code generation time
 - analyzes sparsity
 - determines memory arrangements
- search direction computation uses no libraries (faster) or CHOLMOD (smaller code)
Generating C code

prob.codegen()

produces:

 solver.c template.c README doc.tex Makefile test.c

• produces custom C solver and documentation

• provides skeleton for integrating with other code
Template code

#include solver.h

int main(int argc, char **argv) {
 CG_params params = initparams();
 CG_vars vars = initvars();
 CG_work work = initwork(vars);

 for (;;) { // Control loop.
 // Get new parameter values.

 status = solve(params, vars, work);

 // Test status, export variables, etc.
 }
}
C solver performance

- optimal execution with $T = 20$ steps
- code generation time: 1.1 s, compilation time: 2.3 s
- solve time with C solver: 130 μs (650× speedup)
Using CVXMOD

- prototype, test, simulate model in Python
- generate C solver source
- embed in application
Summary

- CVXMOD as a modeling language using disciplined convex programming
- Real-time embedded optimization ($O(\mu s)$)
- CVXMOD as a code generator for real-time embedded optimization